Enhancing the resilience of energy systems: Optimal deployment of wave energy devices following coastal storms

Cite as: J. Renewable Sustainable Energy 11, 034501 (2019); https://doi.org/10.1063/1.5093731
Submitted: 24 February 2019 . Accepted: 02 May 2019 . Published Online: 04 June 2019

Umesh A. Korde

COLLECTIONS

This paper was selected as Featured

ARTICLES YOU MAY BE INTERESTED IN

Toward a subhourly net zero energy district design through integrated building and distribution system modeling
Journal of Renewable and Sustainable Energy 11, 036301 (2019); https://doi.org/10.1063/1.5093917

Data article: Distributed PV power data for three cities in Australia
Journal of Renewable and Sustainable Energy 11, 035504 (2019); https://doi.org/10.1063/1.5094059

A hybrid MWOAL approach for fast and efficient maximum power point tracking in wind energy conversion systems
Journal of Renewable and Sustainable Energy 11, 033302 (2019); https://doi.org/10.1063/1.5080784
Enhancing the resilience of energy systems: Optimal deployment of wave energy devices following coastal storms

ABSTRACT

Isolated coastal areas and remote islands may be particularly vulnerable to damage from powerful storms, storm surges, and flooding. Because wave energy converters are designed to survive rough seas and can be transported by sea, they could potentially play a role in poststorm operations and contribute to power-grid recovery. To that end, this paper addresses questions such as how many devices would need to be deployed and in what sequence, in order to optimize some performance index that includes, as functions of time, both, the energy needed and the energy converted by the device units. In this work, the wave-by-wave dynamics of the devices are controlled to optimize mean power conversion over 20 min, assuming sea-state stationarity over that period. Sea-state variations between 20 min and 13 h are found to be small (relative to variations between 13 and 60 h) for a candidate deployment site near a Caribbean island. Targeting deployment over 5–7 days, two optimization schemes are considered: (i) maximization of the power conversion capacity over a specified time interval and (ii) minimization of the time taken to deploy the desired conversion capacity. With the wave energy devices controlled for optimal conversion over successive 20-min periods, the optimization is carried out over the number of converter units added as a function of time. The results indicate that optimal deployment sequences can be evaluated for given conversion capacity/recovery-time targets and the type of recovery desired [strategies (i) or (ii) above]. However, depending on the energy richness of the “normal” wave climate at the deployment site, cost-effective recovery may require closer consideration of the trade-offs among device configurations, size, and number of units needed for desired capacity. The potential for wave energy devices to power early recovery operations and to support power-grid black-start could be worth considering further as a means to enhance the resilience of coastal and island energy systems.

NOMENCLATURE

- \(a_r (\omega) \): Fourier transformable part of the frequency-dependent added mass at \(\omega \); \(a_r (\omega) = \tilde{a}_r (\omega) - \tilde{a}_r (\infty) \)
- \(a_r (\infty) \): Infinite-frequency added mass in heave
- \(b_r (\omega) \): Radiation damping due to device oscillations at frequency \(\omega \)
- \(c_d \): Linearized viscous-friction damping
- \(D \): The difference between the targeted \(G = G_R \) and demand currently being served
- \(F_{cr} \): Control/actuation force applied by power take-off
- \(G \): Required power function (i.e., power required for recovery applications)
- \(h_c \): Impulse-response function to be synthesized to enable real-time wave-by-wave control
- \(h_r \): Impulse response function representing the wave propagation model
- \(h_I \): Radiation impulse response function
- \(H_s \): Significant wave height
- \(H_{sm} \): Monthly mean significant wave height
- \(L \): “Lagrangian” defining the integrand for the functional representing performance index
- \(k \): Stiffness coefficient opposing oscillation (hydrostatic for heave, pitch, etc.)
- \(m \): In-air mass of the oscillating element of the device
- \(P_s, P_c \): 20-min average converted power, 20-min average incident wave power, and conversion efficiency, respectively
Recently documented work indicates that the impacts of climate change could be serious for coastal communities. In particular, as a consequence of rising sea levels, coastal storms could become more frequent and more intense, and more likely to precipitate storm surges consequence of rising sea levels, coastal storms could become more frequent and more intense, so would the need for additional external power sources. To that end, it might seem increasingly worthwhile to investigate the potential to use floating-body wave energy converters to assist in overall recovery operations and grid restart. As a step in that direction, this paper explores whether there might be an optimum strategy to derive most benefits from successively deployed wave energy devices, and whether any intrinsic limits exist, on the capacity of a class of present day devices to meet the necessary power demands.

While attempts to use wave energy have been reported since the late 18th century, serious efforts to utilize ocean waves for large scale energy generation began with the work of Salter. Efficient power conversion in energy-rich swells required large devices, posing serious design challenges. Smaller devices such as heaving axisymmetric buoys utilizing favorable 3-dimensional interactions with incoming waves also began to be developed in the 1970s. These devices could respond equally to surface waves incident from any direction ("omni-directional devices"). While the Salter duck and Evans cylinder devices received incoming waves "broad-side on" (i.e., in the beam-sea configuration), other devices were also developed in the 1970s that performed in the "head-sea" configuration and were shaped more like ships. More recent examples of head-sea devices include the Pelamis system that extends the oscillating "spine" with hydraulic actuators as originally developed for use with the Salter duck. Recently tested devices also include the floating Wave Dragon, which extends the shallow-water TAPCHAN system developed in the late seventies. This device uses wave-overtopping into a reservoir to drive a turbine. Of the three types of devices, the head-sea and omni-directional devices are likely more efficient structurally. It is interesting to consider that the Kaimei, one of the earliest wave energy devices to be ocean-deployed, was essentially a ship modified to create 22 oscillating water column chambers open at the bottom. It is likely that devices such as the Kaimei may prove to be of interest to the objectives of this work. However, for convenience, an axisymmetric buoy type device with the geometry described in Ref. is used in this paper. It should be pointed out that this device can be "self-contained," which could facilitate deployment.

This work assumes that the devices to be deployed are controlled for maximum efficiency so that the smallest practical number of units may be used to meet given recovery needs. Active control of the hydrodynamic response provides one way to enhance annual energy conversion with small devices, thereby increasing the overall likelihood of cost-effective operation. Indeed, efforts to increase the response bandwidth by controlling the phase of the force applied by the power take-off were first reported in the seventies. For the Salter duck, control was accomplished by including a reactive component in addition to the resistive part in the torque opposing the duck oscillation and by independently adjusting the magnitudes of the two parts. Investigations on small heaving point-absorber devices with short resonant periods led to the development of the "latching" concept, though this is not the type of control used in this work. The work on single-mode reactive control led to multiple-mode impedance matching approaches termed "complex-conjugate control," which could be applied in the frequency domain for peak-frequency tuning in changing wave spectra. At-sea tests on reactive + resistive loading were performed a few years ago on prototypes of the Wave Star device, and a 2–3 fold improvement in annual power production was reported. The application of reactive and resistive loads in producing correct impedance matching conditions on a wave-by-wave basis in irregular waves presents a fundamental challenge. As has been known since the mid-eighties, wave-by-wave control of a wave energy converter for maximum power conversion requires knowledge or prediction of the incoming wave field. In particular, prediction or foreknowledge of the wave elevation is needed for about 20–30 s into the future (i.e., as far forward into the future, as the causal impulse response function for the device has memory into the past). Wave predictions based on a deterministic propagation model were used to approximate wave-by-wave impedance matching control in computer-generated wave records, and in simulations, significant improvement in the capture width ratio was observed for a 2-body heaving axisymmetric device having the same geometry as that used in the present paper. Consistent with the practice in the wave energy literature, the wave input was assumed to be stationary over a
20–30 min period,³⁰ so that wave spectra and wave statistics such as the significant wave height H_s and energy period T_s could be assumed to hold steady over that time period.

Wave energy devices vary widely, but some configurations (ship forms, some types of buoys, etc.) may be a natural option to consider for power restoration following a coastal disaster since they can be towed over to the site and slack-moored in place. Since such devices might need to operate in shallower waters, shallow-draft buoys rather than spar-type buoys may be preferred when the buoy-type devices are to be used. Transportability by sea would minimize the dependence on road transportation and other land-based infrastructure, and the devices could perhaps be connected to an accessible temporary power hub on the shore without much difficulty. In the long run, some prior pre-storm-season preparation such as erection of temporary water-front power hubs at vulnerable coastal sites may be desirable. The time taken to establish a firm connection to the shore hub needs to be considered further, but is not included in the present treatment of Sec.II. From this standpoint, larger ship-forms encompassing a number of small converter units (such as the Kaimet) may be preferable, as they would likely require only a single shore-connection (as opposed to several, as in the case of buoys). The possibility of wave energy devices being deployed for energy resilience and recovery following an extreme coastal event was discussed recently in a U.S. Department of Energy (DOE) report (referenced earlier in this introduction), under the backdrop of the current recovery practices employed by the U.S. Federal Emergency Management Agency (FEMA).⁵ Effects of extreme coastal events can include damage to portions of the local power grid, temporary incapacitation of the power generation facility supporting the affected area, or both. Power grid recovery frequently involves drawing power from other connected regions to help the local grid restart itself,²⁶ except when the nearest possible sources also experience outage.²⁷ For island grids and coastal grids serving isolated areas, nearest external sources of power may be inaccessible, and the local grid then faces a “black-start” situation. Diesel generators transported to the affected site are frequently used as power hubs serving isolated areas, nearest external sources of power may be inaccessible, and the local grid then faces a “black-start” situation. Diesel generators transported to the affected site are frequently used as external power sources (examples include FEMA’s diesel generators, ranging from 1.5 kW to 1.8 MW³⁰). Other power sources such as fuel cells and solar and wind energy converters have been considered for isolated grids.³² Large-capacity batteries have also been used (e.g., at power capacities as high as 5 and 33 MW³³). While small, distributed microgrids based on renewable energy sources with supporting batteries may be preferred in a number of situations,³⁴ they are at present less common than larger macrogrids. In some coastal regions and islands, there may be an over-dependence on a single, often wholly imported power source. A related example is that of a part of the coast of Oregon, where a bulk of the power is transmitted across a mountain range,³⁵ which results in a local grid that is “fragile.” In addition, diesel generators and batteries may be hard to transport by land, depending on the extent of damage, and could even pose additional environmental risks. It therefore appears worth considering wave energy devices as a potential source of power to aid in grid black-start and to support short-term emergency recovery operations.

In the work discussed in this paper, the wave-by-wave dynamics of the devices are controlled to optimize mean power conversion over successive 20-min periods, assuming sea-state stationarity over that duration. Sea-state variations between 20 min and 13 h are also found to be small (relative to variations between 13 and 60 h) for the wave climate at the proposed deployment site. It is supposed that the wave energy devices are delivered by sea in small numbers and are deployed (i.e., set up and connected for power delivery) in a phased manner. “Power conversion capacity” here is defined as the maximum power that can be converted, as determined by the number of devices deployed (each operating under constrained wave-by-wave impedance-matching control). Targeting deployment over 5–7 days, two optimization schemes are considered: (i) maximization of the power conversion capacity over a specified time interval and (ii) minimization of the time taken to deploy the desired conversion capacity. With the wave energy devices controlled for optimal conversion over each successive 20-min period, the optimization can be carried out over the number of converter units added as a function of time, if the units are arranged so as to avoid interactions (positive or negative). It should be noted that only the energy conversion aspect is included in the present optimization scheme, and costs are not included.

Section II following this introduction discusses the overall formulation used in the present work. Section III summarizes the calculations performed and the results included here. The results are discussed in Sec. IV. The paper concludes with Sec. V, which outlines the principal conclusions of this work.

II. FORMULATION

This section describes the overall methodology used here to determine optimal deployment sequences for wave energy device units following a storm-caused large scale power outage. It is not practical to deploy all the required units at one time. However, recovery operations require that power conversion and delivery begin at the earliest. It should be pointed out that resilience is frequently defined as the area under the “resilience triangle” where linear recovery is assumed.³⁶ In the present context, this would translate into a sudden drop in power capacity following an extreme event such as a coastal storm/hurricane and a more gradual recovery over a length of time. The present paper investigates whether and how different the optimum recovery path may be from a straight line and considers a variational optimization technique to derive optimal recovery trajectories. It is recognized that the optimum trajectory may be dependent on the definition of the performance index and the optimization criterion selected. Two straightforward implementations are considered here. The approach in (1) below is referred to as the “maximum capacity deployment over specified time period,” while the approach in (2) represents the minimum time deployment. The goals of the two strategies are summarized below.

1. To find a function of time that maximizes the power demand served over a prescribed length of time. Then, to evaluate a function of time that describes the desired temporal evolution of the power conversion capacity.
2. To evaluate the temporal evolution of the power demand and the power conversion functions simultaneously so that a prescribed level of conversion capacity is reached in the shortest time.

A measure of resilience is thus arrived here (1) as maximum power recovered over a prescribed duration and (2) as the time taken to recover specified power capacity. It is important to recognize first that the two strategies are to be employed in an environment where the incoming energy is subject to changes on multiple time scales. Thus, wave profiles vary incessantly, on time scales of 1–20 s. Wave statistics, on the other hand [i.e., power spectral density $S(x)$],
significant wave height H_s, energy period T_e, etc., remain valid for 20–30 min. In general, H_s and T_e may vary over timescales of 2–12 h depending on the wind-sea/swell contributions, while variations on longer timescales occur over larger spatial scales and with seasonal changes. Deployment off the coast of Puerto Rico is considered in this work, where wave measurements are available off Rincon, from a wave data buoy at the CDIP station 181. Figure 1 shows the wave spectral density variations based on the CDIP 181 data, while Fig. 2 shows the variations about the monthly mean statistics that are relevant to the deployment period (i.e., in magnitude and period).

The wave-statistic variations are addressed in the manner described later in this section. The wave energy device used in this study is a 2-body axisymmetric system, with the relative heave oscillation being used for power conversion. The power take-off system is assumed to be electro-hydraulic. The device used here is a geometrically scaled version of the system considered in this author’s previous work. (see Fig. 3 for a schematic view of the system). It should be noted that the treatment below assumes that both the incident waves and the device response are linear. Near-shore waves may not be strictly linear; however, in which case, the treatment below will be valid to first order. Since both force and velocity below will likely miss second-order effects, the uncertainty in estimates of power generation below needs further attention. Furthermore, even though a moderately large number of buoy units are expected to be deployed, interaction effects, whether positive or negative, are here neglected. However, this aspect would need to be considered, perhaps, in the form of a constraint on the number of units to be deployed over a given area.

Device dynamics for single-mode oscillation in real time need to be described with an integro-differential equation:

$$\begin{align*}
 [m + \bar{\rho}(\infty)]\ddot{u}(t) + \int_{0}^{t} h_{\rho}(\tau)\dot{u}(t - \tau)d\tau + c_{d}u(t) + k\int_{-\infty}^{t} u(\tau)d\tau &= F_{f}(t),
\end{align*}$$

where m, $\bar{\rho}(\infty)$, c_{d}, and k denote the in-air mass, infinite-frequency added mass, linearized viscous friction damping, and hydrostatic stiffness of the oscillating element of the device, respectively, u is the oscillation velocity, and $h_{\rho}(t)$ is the radiation impulse-response function. $h_{\rho}(t)$ must be causal ($h_{\rho}(t) = 0$, $t < 0$), and hence, the real and imaginary parts of its Fourier transform satisfy the Kramers–Kronig relations. Alternatively,
\begin{align}
 h_i(t) &= \frac{2}{\pi} \int_0^\infty b_i(\omega) \cos \omega t d\omega = -\frac{2}{\pi} \int_0^\infty a_i(\omega) \sin \omega t d\omega, \\
 L(t) &= \frac{1}{2} \left[D(t) \dot{\theta}^2 + (\tau_R - \tau_0)^2 \dot{\theta}^2 \right] d\tau, \\
 \tau_R &= 120 \text{ h}. \quad \text{for prescribed } \tau_0 \text{ and } \tau_R
\end{align}

That is, \(h_i(t) = 0 \), \(t > 0 \). Therefore, \(F_i(t) \) needs to be synthesized using wave-elevation prediction (20–30 s ahead). \(h_i(t) \) may more conveniently be represented using an odd function \(h_o(t) \) and an even function \(h_e(t) \), as shown in the Appendix, which also summarizes the dynamic model for the system used in the present work. Additional "constraint damping" to keep device excursions within practical limits is also needed,\(^{38}\) but not shown in Eq. (1). Figure 4 shows the converted power time series for the monthly mean wave conditions (\(H_{sm} = 1.4 \text{ m}, T_{sm} = 9.4 \text{ s} \)).

FIG. 3. The heaving axisymmetric device used in this work. Relative oscillation is utilized for energy conversion with a hydraulic cylinder type power take-off mechanism/actuator. The power take-off also applies the required control force in this work. The dimensions are based on the configuration studied in Ref. \(^{18}\).

FIG. 4. Converted power time series for the monthly mean wave conditions; \(H_{sm} = 1.4 \text{ m}, T_{sm} = 9.4 \text{ s} \). The plot also shows the mean converted power over 20 min.

A. Maximum capacity deployment over a specified time

It is recalled that a measure of resilience is here obtained as the ability of a coastal area to recover maximum power conversion capacity over a specified time interval. As a first step, a function \(G(\tau) \geq 0 \) is defined that optimizes power demand served over a prescribed time period, here, 5 days, with \(\tau \) in hours. Next, a wave energy conversion rate function \(R(\tau) \) is found that best matches \(G(\tau) \) despite variations in the incident wave conditions. Letting \(G_R \) denote the target demand rate to be reached at \(\tau = \tau_R \) as \(G_R \) (starting from \(G = 0 \) at \(\tau = 0 \)), the instantaneous difference \(G_R - G \) can be defined as

\[
 D(\tau) = G_R - G(\tau). \quad (4)
\]

The "action" functional for the function \(D \) is defined as \(\Psi_D \),\(^{43}\) where,

\[
 \Psi_D = \int_{\tau_0}^{\tau_1} \left[(D(\tau))^2 + (\tau_R - \tau_0)^2 \dot{\theta}^2 \right] d\tau, \quad \dot{\theta} \equiv dD/d\tau. \quad (5)
\]

The goal is to evaluate \(D(\tau) \) such that \(\Psi_D \) is minimized when its first variation \(\delta \Psi_D = 0 \). For prescribed \(\tau_0 \) and \(\tau_R \),

\[
 \delta \Psi_D = \int_{\tau_0}^{\tau_1} \delta \mathcal{L}(D, \dot{\theta}) d\tau = 0, \quad (6)
\]

where \(\mathcal{L}(D, \dot{\theta}) \) represents the integrand in Eq. (5). Equation (6) implies that

\[
 \frac{\partial \mathcal{L}}{\partial D} \frac{d}{d\tau} \left(\frac{\partial \mathcal{L}}{\partial \dot{\theta}} \right) = 0, \quad (7)
\]

subject to \(D(\tau_0) = G_D \), since \(G(\tau_0) = 0 \), and \(D(\tau_r) = 0 \), since \(G(\tau_r) = G_R \). \(G_R \) is the desired power level to be supplied to the affected region at \(\tau = \tau_R \). For example, here, 2 MW, 10 MW, etc., at \(\tau_R = 120 \text{ h} \).
\[
d^2D \frac{d^2}{d\tau^2} - \frac{D}{(\tau_R - \tau_0)^2} = 0, \tag{8}
\]
which leads to the solution, for \(\tau_0 = 0\),
\[
D(\tau) = G_R \left(\cosh \left(\frac{\tau}{\tau_R} \right) - \coth 1 \sinh \left(\frac{\tau}{\tau_R} \right) \right). \tag{9}
\]
With \(D(\tau)\) defined in Eq. (4), Eq. (9) leads to
\[
G(\tau) = G_R \left[1 - \cosh \left(\frac{\tau}{\tau_R} \right) + \coth 1 \sinh \left(\frac{\tau}{\tau_R} \right) \right]. \tag{10}
\]
To account for the variation in wave spectra, \(R(\tau)\) is defined as
\[
R(\tau) = R_0(\tau) + \sum_{n=1}^{N} R_n(\tau), \tag{11}
\]
where \(R_0(\tau)\) denotes the power conversion rate for the monthly mean spectral conditions, \(H_{rms} = 1.4\ m, T_{rms} = 9.4\ s,\) and \(R_n(\tau)\) denotes the differences in conversion due to spectral variations about the mean. Here, \(N = 4\) for the 4 periods (13h, 23h, 33h, 60h) identified in Sec. II. Under constrained wave-by-wave control, conversion efficiency is assumed to be almost equal in all wave conditions (but see Ref. 37). The spectral power is known from the wave conditions, and device efficiency under constrained wave-by-wave control can be estimated for a particular device. Thus, the converted power is
\[
P_c(\tau) = P_0(\tau) \ell, \tag{12}
\]
where \(P_0 = 0.49H^2 T_d D\) is the spectral wave power incident over a diameter \(D\) of an axisymmetric device and \(\ell\) is the overall power conversion efficiency.
\[
R(\tau) = U P_c = U (P_m + \Delta P_1 + \Delta P_2 + \cdots) \ell, \tag{13}
\]
where \(\Delta P_n = P_n - P_m\) for the \(N = 4\) relevant spectral variation periods here. The only variable that can be varied for a given deployment site and a given device type is thus \(U\), the number of device units deployed. Optimizing an increasing \(R(\tau)\) therefore amounts to determining the rate at which new device units need to be added. It is recalled that favorable or unfavorable interactions among device units are not considered here. Since \(\Delta P\) are an order of magnitude smaller than \(P_m\) for the present site, the procedure adopted here consists of using \(R_0(\tau) = U(\tau)P_m\) and optimizing the function \(R_0(\tau)\), here determined so that it best matches \(G(\tau)\). The net \(R(\tau)\) is then found using Eq. (13). The results (Sec. III) suggest that such an approach may be adequate in the present context. An action functional \(\Psi_R\) is now defined such that
\[
\Psi_R = \int_{T_0}^{T_\alpha} \left[(R_0(\tau) - G(\tau))^2 + (T_0 - T_\alpha)^2 (R_0(\tau) - G(\tau))^2 \right] d\tau. \tag{14}
\]
Following the same reasoning as used for optimizing \(G(\tau)\),
\[
\frac{\partial L}{\partial R_0} \frac{d}{d\tau} \left(\frac{\partial L}{\partial R_0} \right) = 0, \tag{15}
\]
so that
\[
\frac{d^2 R_0}{d\tau^2} - \frac{R_0}{(\tau_R - \tau_0)^2} = \frac{d^2 G}{d\tau^2} - \frac{G}{(\tau_R - \tau_0)^2}. \tag{16}
\]
With \(R_0(\tau) = U(\tau)P_m\), this condition leads to \((\tau_0 = 0)\)
\[
U(\tau) = \frac{G_R}{P_m} \left[1 - \cosh \left(\frac{\tau}{\tau_R} \right) + \coth 1 \sinh \left(\frac{\tau}{\tau_R} \right) \right]. \tag{17}
\]
The optimum unit deployment function \(U(\tau)\) is, of course, here approximated by the nearest integer value at each \(\tau\). Then, \(R(\tau) = U(\tau)(P_m + \Delta P_1 + \Delta P_2 + \Delta P_3 + \cdots)\).
\[
\frac{kW}{hr}\text{ energy for estimating }\#\text{ houses or equivalent uses that can be powered can be found by integrating }R(\tau)\text{ over }\tau.
\]

B. Minimum time deployment

Resilience is here interpreted in terms of being able to deploy over minimum time a specified capacity to meet the demand. It is realized that a more compact variational strategy may result if one could begin by likening the recovery problem to the classic “branchiostorne problem” of Variational Calculus. With the rate at which more users are connected \(G(\tau)\) on the horizontal axis, the rate at which more wave energy conversion capacity is added forms the ordinate. At a desired "acceleration" \(a\) in the direction of increasing \(R(\tau)\), the goal here is to find a trajectory in the \(G - R\) plane that minimizes the time taken by \(R(\tau)\) to increase from \(G = 0\) to \(G_R\). For a trajectory \(s(\tau)\) in the \(G - R\) plane,
\[
\frac{ds}{d\tau} = \sqrt{2aR}. \tag{19}
\]
It follows from
\[
ds = \sqrt{dG^2 + dR^2} = \left[1 + \left(\frac{dR}{dG} \right)^2 \right]^{1/2} dG, \tag{20}
\]
that
\[
d\tau = \frac{\left[1 + R^2 \right]^{1/2}}{2aR} dG. \tag{21}
\]
The total time the trajectory takes for moving \(R\) from \(G = 0\) to \(G = G_R\) is
\[
\tau = \int_0^{G_R} \frac{1 + R^2}{2aR} dG. \tag{22}
\]
Denoting the integrand as \(L(R, R')\), for a stationary value of \(\tau, \delta \tau = 0\) and
\[
\frac{\partial L}{\partial R} \frac{d}{d\tau} \left(\frac{\partial L}{\partial R'} \right) = 0, \quad R(0) = 0; \quad R(\tau) = G_R. \tag{23}
\]
It is useful here to invoke the fact that \(L\) has no explicit dependence on \(\tau\) so that Eq. (23) implies
\[
L - R' \frac{\partial L}{\partial R'} = C. \tag{24}
\]
Letting \(C_m = 1/2aC^2\), some algebra leads to
\[
G(\phi) = \frac{C_m}{2} (2\phi - \sin \phi); \quad R(\phi) = \frac{C_m}{2} (1 - \cos \phi). \tag{25}
\]
The trajectory represented by Eq. (25) is a cycloid. \(C_m \) is related to the desired power generation at \(\tau \). \(\phi \) goes from 0 to \(\phi_R \), where \(\phi_R = 1.2 \), chosen such that \(G(\phi_R) = R(\phi_R) \). Then, carrying the integration through in Eq. (22)

\[
\tau_R = \phi_R \sqrt{\frac{2C_m}{a}},
\]

(26)

for the chosen \(\phi_R \). As before, \(R \) here is replaced by \(R_0 = U P_m \), where \(U \) is the number of device units deployed. As in Sec. II A, favorable or unfavorable interaction effects among device units are not considered here. Once \(U(\phi) \) is determined according to Eq. (25)

\[
R(\phi) = U(\phi)(P_m + \Delta P_1 + \Delta P_2 + \cdots + \Delta P_N); \quad N = 4.
\]

(27)

kW\/H energy for estimating # houses or equivalent uses that can be powered can be found by integrating \(R(\tau) \) over \(\tau \).

III. Calculations and Results

Calculations were carried out using wave statistics off Rincon, Puerto Rico, for November 2016, as reported by the CDIP 181 wave measurement buoy. A 2-body axisymmetric system based on a cylindrical buoy and a submerged disk (with relative heave oscillations being used for energy conversion) was used (Fig. 3), with \(R = 8 \text{m} \). For the average wave conditions for November 2016, the wave elevation time series were based on a 2-parameter Pierson-Moskowitz type wave spectral representation, as shown below. The spectral density was represented as

\[
S_0(\omega) = \frac{131.5 H_2^2}{T_c^2 \omega^5} \exp \left[-\frac{1054}{(T_c \omega)^4} \right].
\]

(28)

The wave elevation at a point \(x_n \), up-wave of the device was found using

\[
\eta(x_n; t) = \sum_{n=1}^N \Re \left\{ A(\omega_n) \exp[-i(\omega_n x_n - \omega_n t + \theta_n)] \right\},
\]

(29)

where

\[
A(\omega_n) = \sqrt{2S_0(\omega_n) \Delta \omega_n},
\]

(30)

and \(\theta_n \) is a random number \(\in [0, 2\pi] \), with \(S_0(\omega_n) \) representing the spectral density value at \(\omega_n \). The wave elevation at the model location \(x_n \) was predicted at a time \(t_n = 30 \text{s} \) into the future, using the expression,

\[
\eta(x_n; t) = \int_{-\infty}^{\infty} h_1(\tau) \eta(x_n; t - \tau) d\tau,
\]

(31)

where \(h_1 \) is the impulse-response function representing the propagation kinematics and is found as discussed in previously reported work. As indicated earlier, wave conditions may vary significantly over the period of deployment. While wave profiles vary over time scales of

![FIG. 5. Strategy 1: maximum capacity recovery in the prescribed time. The figure shows the number of units to be added over 5 days to maximize capacity.](image)

![FIG. 6. Strategy 1: maximum capacity recovery in the prescribed time. The figure plots the effect of variability in wave statistics about the monthly mean. Mean converted power is shown.](image)
1–20 s, wave statistics (i.e., statistical parameters such as the mean wave height, significant wave height, mean wave period, and energy period) may remain approximately constant over time scales such as 20–30 min. An example of power spectral density variation over a month is shown in Fig. 1, for a measurement location off Rincon, Puerto Rico, for the month of November, 2016, with the period in hours shown on the x-axis. The power spectrum is seen to vary considerably over this period, and the largest peak represents the monthly mean conditions of \(H_{\text{sm}} = 1.4\) m and \(T_{\text{em}} = 9.4\) s. Smaller variations about the monthly mean are shown in Fig. 2 with frequency in 1 h on the x-axis. For a proposed deployment period of 5–7 days, it is noted that only the variation peaks up to 90 h seem to be relevant. The shortest-period significant peak in this range has a period of 13 h, with the longest period included in the calculations being 90 h (Fig. 2). In each case, the spectral density variations relative to the mean are seen to be about an order of magnitude smaller than the power conversion under the monthly mean conditions.

An example of short-term variation in power conversion under wave-by-wave impedance matching with displacement constraints for the monthly mean wave conditions is shown in Fig. 4. The mean power converted over 20 min is also shown in Fig. 4. It is recalled that the results in Fig. 4 are for an omni-directional axisymmetric heaving buoy device with a shallowly submerged reaction plate.
radius being \(R = 8 \text{ m} \). These results are representative of the expected power conversion performance for the chosen device for the monthly average conditions. Small changes in wave conditions will cause small changes in the mean converted power, even when the conversion performance is at its practically attainable constrained optimal. However, the approach taken in the present work is to optimize the deployment strategy with respect to the monthly mean wave statistics and over the optimal trajectories to superimpose the effect of the smaller variations in wave statistics. It is anticipated that the overall deployment strategy will still be close to optimal in terms of power conversion performance if monthly mean statistics and wave-statistic variations for the same month from the previous two years (for instance) are used to assist on-site planning. It is also worth keeping in mind that the strategies evaluated here are to be provided as an input to recovery planners, and practical considerations could force additional changes to the optimum deployment trajectories.

Figures 3–7 plot the results for the maximum recovery strategy, whereas the results for the minimum-time recovery strategy are shown in Figs. 8–11. It should be noted that for the maximum power recovery the function \(G \) also includes any necessary storage planned as part of the recovery process. The recovery curve in Fig. 5 is of a hyperbolic sine form [Eqs. (10) and (17)]. The left hand y-axis on the plot in Fig. 5 shows the amount of power-demand restored using wave energy converters alone, regardless of their intended use. The short-dashed line shows power-conversion recovery along a straight line from \(G(0) = 0 \) to the desired \(G(t_{opt}) = G_{opt} = 10 \text{ MW} \). Compared to a straight line, the optimal trajectory as determined here is found to provide greater recovery for the same recovery time. The long-dashed line plots the number of device units to be deployed and connected in order to meet the increasing power demand. The time axis is in hours, indicating that in order to provide 10 MW over 5 days, about 120 units will need to be connected.

It is recalled that omni-directional 2-body heaving axisymmetric devices are used here for their independence from the need for sea-floor based reference inertias. Although better conversion efficiencies (and greater power per unit) are available with deeply submerged reaction masses, the relatively shallowly submerged reaction mass in the present work could make for easier transportation and deployment. However, the feasibility of an operation aimed at transporting and deploying the required number of units (for generating the desired power amounts) needs to be considered further.

Figure 6 shows the effect of wave-statistic variations on the power supplied by the wave energy device units. For the most part, for the present site, the power supplied is seen to be slightly smaller or somewhat greater than the power needed on the optimum recovery trajectory. Figure 7 plots the supplied and generated energies in kWh units as indicated on the left-hand y-axis, while the equivalent result in terms of the number of houses reconnected is shown on the right-hand y-axis. It should be pointed out that the effect of the spectral statistic variations is included in the kWh generated capacity calculations and is found to have been largely “integrated out” of the recovery process over 5 days. The number of houses connected is used as an example in this work, whereas the energy could instead (or in addition) also be directed for other recovery applications such as desalination, deflooding, and construction.

Figure 8 plots the converted power as a function of required power for minimizing the time taken for recovery. The different traces in the plot are for different values of the “recovery rate parameter” \(a \). For the type of power amount and recovery times being considered here, a recovery-rate parameter value \(a = 6 \) is chosen as adequate. However, studies with other values of \(a \) could provide further insights. Figure 9 plots the supplied power as a function of time in hours on the left-hand y-axis, which also indicates the power converted. The dashed-dotted line shows the converted power trajectory. The required capacity of 10 MW is seen to be recovered in 80 h. As the short-dashed line indicates, straight-line recovery provides better conversion for the first 45 h for the present target of 10 MW. However, the minimum-time optimum trajectory provides better conversion beyond that point, reaching 10 MW in 80 days, while the straight-line trajectory reaches that level over 120 days. The converted power results translate directly to the number of units required, shown on the right-hand y-axis. The number of units to be deployed to provide 10 MW is found to be approximately the same as that with the maximum-recovery strategy.

The effect of wave-statistic variations is shown in Fig. 10. Since the converted power exceeds the supplied power through the 80-h period (for reaching 10 MW), small changes caused by variations in the spectral statistics are potentially less limiting for this strategy. Figures 9 and 10 suggest that storage need not be included explicitly in the function \(G \) for this strategy, but that it should result as a by-product of the minimum-time strategy. Figure 11 plots the results in integrated energy units, where the left-hand y-axis plots the energy supply recovered, while the right-hand y-axis shows the energy amount converted in terms of the number of houses connected. This number is seen to be comparable to that seen with the maximum recovery strategy. Once again, it is noted that other energy uses such as desalination and deflooding are also possible to address within the present framework.

Tables I and II summarize the overall findings for the two strategies for different power-level objectives. The more significant differences for small and intermediate power levels between the maximum recovery and minimum time strategies perhaps can be attributed to...
the particular choice of the parameter a in this work. The current value, a = 6, leads to an optimum use of the devices when the desired power goal is 10 MW (recovered over 80 hours), and a different value may be preferable for smaller power amounts. The differences in the number of houses powered (related to kWH available for any desired use) are due to the form of the power curves and the number of hours for recovery for the two strategies (maximum recovery over the prescribed time strategy and the minimum time strategy).

Future work on this effort could be based on the following considerations. Overall, it appears that modest power supply and power conversion requirements could be met using 2-body axisymmetric wave energy devices, even though the number of units required for doing so needs to be considered further. Specifically, because the present device is being controlled for constrained optimal (impedance matching) control on a wave-by-wave basis, its performance can be said to be at a level close to the best available. For this reason, the situation seems to demand devices with more efficient hydrodynamics which are still easily transportable by sea. Ideally, the type of power target desired here should require about a tenth of the number of units currently necessary, without an excessive increase in the device size (since a device 8 m in radius can already be considered large). Finally, favorable or unfavorable array effects due to interactions between units are not considered in this work. Avoidance of interactions could require the number of units per available deployment area be accounted for via constraints to be adjoined with the current Lagrangians in Secs. II A and II B. In addition, the effect of possible wave nonlinearity in the near-shore deployment regions also needs to be accounted for, by providing an estimate on the uncertainty in the converted power estimates discussed earlier in this section.

V. CONCLUSIONS

It can be argued that the lower energy densities of renewable energy sources (such as wave energy) tend to work favorably from a resilience and recovery standpoint. A large number of renewable energy converter units distributed over a sizeable area would typically be required for meeting prescribed energy demands. It is plausible that, whereas severe local damage due to extreme events could disrupt the operation of an entire generation plant based on high-density fuels, such damage might only incapacitate a smaller proportion of the generation facility in the case of low-density renewable sources. In addition, in the case of wave energy converters, recovery operations could be better targeted through selective deployment close to affected areas, where additional units could be transported to the location by sea, i.e., without requiring major land-based operations.

Considerable further work is needed, however, in order to improve the energy conversion technology itself in terms of its power capture, structural, transportation, and deployment efficiencies. Thus, while wave energy devices are typically designed for long-term operation at particular sites, in an application such as proposed here, they would need to be designed to operate efficiently and safely at a number of different sites. The proposed application may thus provide some design and optimization challenges that should prove to be of interest.

The present results indicate that there may be scope, concurrently to optimize device sizes with the number of units to be deployed,
taking into account the conversion efficiencies and ease of transportation and deployment. It is interesting to note that, close to damaged sites, the waters may be relatively shallow, in which case shallow-draft devices may be preferable. Therefore, it is likely that one large floating transportable structure housing a number of smaller converters within it (such as the Kaimen vessel) could be worth considering in the short run, if hydrodynamic control for high efficiency operation could be used. In the near term, wave energy converters may prove to be useful as a potentially attractive option for isolated and fragile grids facing black-start situations. In addition, it would be interesting to consider using progressively deployed wave energy devices generally to assist in short-term recovery operations. Short term recovery would typically involve (in addition to grid black start) augmenting emergency generation facilities for hospitals, essential businesses, street repair, street/traffic lighting, refrigeration, water treatment, air-traffic control, local communication systems, etc. (Fig. 12, Ref. 46). It is expected that, as more of the original generation and power grid capability is recovered, the wave energy device units would be transported to a different location to facilitate different recovery operations. The additional use of progressively deployed wave energy devices to provide desalinated drinking water and to power operations such as deflooding may also be worth considering. It is recognized, however, that the magnitude of recovery operations in several instances may be too large for one particular power source, and the additional use of solar, wind, marine tidal current, and hydroelectric (where possible) energies may become necessary and should be considered within an overall optimization study.

ACKNOWLEDGMENTS

It is a pleasure to thank Professor Ben Hobbs for the numerous discussions on resilience, energy sustainability, and optimization techniques. Much gratitude is due to Dr. John Kamp at the Defense Advanced Research Projects Agency and Mr. William McShane at the Department of Energy for their continuing and helpful feedback on this work.

APPENDIX: EQUIVALENT SINGLE-MODE MODEL AND IMPULSE RESPONSE FUNCTIONS

As described in previous work Refs. 26 and 47, the frequency domain model for the present 2-body device can be written as

\[
\begin{align*}
&Z_i(\omega) = L_i(\omega) + \frac{N_i(\omega)}{\omega}, \\
&Z_a(\omega) = \frac{1}{\omega} \left(m + a_i(\omega) \right) + \frac{b_i}{\omega} + \left(c_{ab} + b_{ab}(\omega) \right), \\
&Z_b(\omega) = \frac{1}{\omega} \left(m + a_b(\omega) \right) + \frac{b_b}{\omega} + \left(c_{ba} + b_{ba}(\omega) \right), \\
&Z_t(\omega) = Z_i(\omega) + Z_a(\omega) + Z_b(\omega), \\
&Z_v(\omega) = V_i(\omega) + V_a(\omega) + V_b(\omega), \\
&V_i(\omega) = V_i(\omega) - V_b(\omega),
\end{align*}
\]

(A1)

where the matrix elements are defined as

\[
\begin{align*}
Z_i(\omega) &= \frac{1}{\omega} \left(m + a_i(\omega) \right) + \frac{b_i}{\omega} + \left(c_{ab} + b_{ab}(\omega) \right), \\
Z_a(\omega) &= \frac{1}{\omega} \left(m + a_i(\omega) \right) + \frac{b_i}{\omega} + \left(c_{ba} + b_{ba}(\omega) \right), \\
Z_b(\omega) &= \frac{1}{\omega} \left(m + a_b(\omega) \right) + \frac{b_b}{\omega} + \left(c_{ab} + b_{ab}(\omega) \right), \\
Z_t(\omega) &= Z_i(\omega) + Z_a(\omega) + Z_b(\omega), \\
Z_v(\omega) &= V_i(\omega) + V_a(\omega) + V_b(\omega), \\
V_i(\omega) &= V_i(\omega) - V_b(\omega),
\end{align*}
\]

(A2)

where \(b_{ab}\) and \(b_{ba}\) denote the frequency-dependent radiation damping for the two bodies, while \(a_i(\omega)\) and \(a_b(\omega)\) denote the infinite-frequency added masses for the two bodies and \(a_i(\omega)\) and \(a_b(\omega)\) represent just the frequency-dependent parts of the respective added masses. The letter \(k\) denotes stiffness (hydrostatic for the floating buoy and mooring-related for the submerged disk), while \(c_{ab}\) and \(c_{ba}\) represent the linearized viscous damping coefficients. \(a_i\) and \(b_i\) denote the frequency-variable added mass and radiation damping due to coupling between the two bodies. \(Z_t\) represents the load impedance applied by the power take-off on the relative oscillation. Following the approach of Falnes, it is possible to express Eq. (A1) as a scalar equation in terms of the relative velocity \(v_i(\omega)\)

\[
\frac{dt}{\omega} v_i(\omega) = F_i(\omega) - k_i(\omega) - c_i(\omega)v_i(\omega) - b_i(\omega)v_i(\omega),
\]

(A3)

by defining

\[
Z_i(\omega) = Z_{i}(\omega) + Z_{ab}(\omega) + 2Z_{t}(\omega),
\]

(A4)

and

\[
F_i(\omega) = \frac{F_i(\omega)(Z_{t}(\omega) + Z_{i}(\omega)) - F_{ab}(\omega)(Z_{i}(\omega) + Z_{t}(\omega))}{Z_{i}(\omega)}. \tag{A5}
\]

It is seen that

\[
v_i(\omega) = \frac{F_i(\omega)}{Z_{i}(\omega) + Z_{t}(\omega)}, \tag{A6}
\]

where

\[
Z_{i}(\omega) = \frac{Z(\omega)Z_{i}(\omega) - Z_{t}(\omega)}{Z_{i}(\omega)}. \tag{A7}
\]

In the analysis of Sec. II

\[
U(\omega) = v_i(\omega), \quad b(\omega) = \Re\{Z_{i}(\omega)\}, \quad C(\omega) = \Im\{Z_{i}(\omega)\}. \tag{A8}
\]

With

\[
\begin{align*}
U(t) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} U(\omega) e^{i\omega t} d\omega, \\
h_{0}(t) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} b(\omega) e^{i\omega t} d\omega, \\
h_{a}(t) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} C(\omega) e^{i\omega t} d\omega.
\end{align*}
\]

(A9)

Furthermore,

\[
\begin{align*}
h_{e}(t) &= h_{0}(t) + h_{a}(t), \\
h_{c}(t) &= h_{0}(t) - h_{a}(t). \tag{A10}
\end{align*}
\]

\(h_{0}(t)\) is an even function and \(h_{a}(t)\) is an odd function, so that \(h_{c}(t)\) is causal, and \(h_{e}(t)\) is anticausal. Since, \(h_{e}(t) \to 0\), \(t \to \infty\), where \(t\) is typically 20–30 s. It is easier in practice to use \(h_{e}(t)\) and \(h_{c}(t)\) separately, with velocity predictions, which in turn are based on wave elevation predictions. Further details, including the need to predict the exciting force, are discussed in Ref. 42.
REFERENCES

J. Renewable Sustainable Energy 11, 034501 (2019); doi: 10.1063/1.5093731
Published under license by AIP Publishing
10.1063/1.5093731
11, 034501-12