Seasonal Changes in Sand Level and Wave Energy on Southern California Beaches

Marissa L. Yates1, R. Guza1, R. Seymour1, W. O’Reilly1, and R. Gutierrez2

1Scripps Institution of Oceanography, 2University of Texas - Austin

Abstract Number 821

Introduction

- Investigate seasonal variability of sand levels in Southern California
- Sand levels LIDAR and in-situ surveys at two focus sites
- Waves: regional network and numerical model

GPS Sand Level Observations

- Back beach to waterline
- Vertical accuracy ~10 cm

Wave Observations

- Wave observations combined with numerical model
- Hourly estimates every 100 m alongshore
- Alongshore variability in wave field due to offshore islands

Southern California Wave Field: Dec. 21, 2004

Finding the Waterline:

Goal:
- Diverse LIDAR returns from ocean surface
- Retain LIDAR returns from sand surface

Tests:
- Compare LIDAR processing to regions where ATV data is available
 - ATV-LIDAR divergence is most offshore
 - Acceptable LIDAR data point
 - Using LIDAR tide level, and wave height to define waterline

Results

Focus Sites

San Onofre Beach
3km

Torrey Pines Beach
7 km

Elevation Change
Volume Change
Spatial EOF

Spatial Amplitude of First EOF

San Onofre

Torrey Pines

San Onofre

Torrey Pines

San Onofre

Torrey Pines

Conclusions

- Primarily seasonal cycle in sand level fluctuations: summer accretion when south swell is predominant and winter erosion when north swell is predominant
- Considerable alongshore variability, with three times as much elevation change at Torrey Pines than at San Onofre
- Seasonal volume change and wave energy correlated at the focus sites, but not over the 79 km section
- In general, more variability in seasonal volume changes than seasonal wave field
- Larger sand grain size at San Onofre and elsewhere could contribute to difference
- Future work investigating the influence of grain size (and cobbles), beach width, and wave obliquity

A BIG thank you to the engineers and technicians from the hydraulics lab for their labor intensive completion of in-situ surveys.